Last Updated on March 23, 2023 by You Ling
What’s Piezo material Specification?
Piezo materials (PMs) can be broadly classified as either crystalline, ceramic, or polymeric. The most commonly produced piezoelectric ceramics are lead zirconate titanate (PZT), barium titanate, and lead titanate. Gallium nitride and zinc oxide can also be regarded as ceramic due to their relatively wide band gaps. Semiconducting PMs offer features such as compatibility with integrated circuits and semiconductor devices. Inorganic ceramic PMs offer advantages over single crystals, including ease of fabrication into a variety of shapes and sizes not constrained crystallographic directions. Organic polymer PMs, such as PVDF, have low Young’s modulus compared to inorganic PMs. Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured into large areas, and cut into a variety of shapes. In addition, polymers also exhibit high strength, high impact resistance, low dielectric constant, low elastic stiffness, and low density, thereby a high voltage sensitivity which is a desirable characteristic along with low acoustic and mechanical impedance useful for medical and underwater applications.
Among PMs, PZT ceramics are popular as they have a high sensitivity, a high g33 value. They are however brittle. Furthermore, they show low Curie temperature, leading to constraints in terms of applications in harsh environmental conditions. However, promising is the integration of ceramic disks into industrial appliances molded from plastic. This resulted in the development of PZT-polymer composites, and the feasible integration of functional PM composites on large scale, by simple thermal welding or by conforming processes. Several approaches towards lead-free ceramic PM have been reported, such as piezoelectric single crystals (langasite), and ferroelectric ceramics with a perovskite structure and bismuth layer-structured ferroelectrics (BLSF), which have been extensively researched. Also, several ferroelectrics with perovskite-structure (BaTiO3 [BT], (Bi1/2Na1/2) TiO3 [BNT], (Bi1/2K1/2) TiO3 [BKT], KNbO3 [KN], (K, Na) NbO3 [KNN]) have been investigated for their piezoelectric properties.
Key piezoelectric properties
- The piezoelectric coefficients (d33, d31, d15) measure the strain induced by an applied voltage (expressed as meters per volt). High dij coefficients indicate larger displacements which are needed for motoring transducer devices. The coefficient d33 measures deformation in the same direction (polarization axis) as the induced potential, whereas d31 describes the response when the force is applied perpendicular to the polarization axis. The d15 coefficient measures the response when the applied mechanical stress is due to shear deformation.
- Relative permittivity(εr) is the ratio between the absolute permittivity of the piezoelectric material, ε, and the vacuum permittivity, ε0.
- The electromechanical coupling factor is an indicator of the effectiveness with which a piezoelectric material converts electrical energy into mechanical energy, or converts mechanical energy into electrical energy. The first subscript to k denotes the direction along which the electrodes are applied; the second denotes the direction along which the mechanical energy is applied, or developed.
- The mechanical quality factor Qm is an important high-power property of piezoelectric ceramics. It is the inverse of the mechanical loss tan ϕ.
Single crystals | ||||||
---|---|---|---|---|---|---|
Reference | Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) | Orientation | Piezoelectric coefficients, d (pC/N) | Relative permittiviy, εr | Electromechanical coupling factor, k | Quality factor |
Hutson 1963[2] | AlN | d15 = -4.07 | ε33 = 11.4 | |||
Hutson 1963[2] | AlN | d31 = -2 | ||||
Hutson 1963[2] | AlN | d33 = 5 | ||||
Cook et al. 1963[3] | BaTiO3 | d15 = 392 | ε11 = 2920 | k15 = 0.57 | ||
Cook et al. 1963[3] | BaTiO3 | d31 = -34.5 | ε33 = 168 | k31 = 0.315 | ||
Cook et al. 1963[3] | BaTiO3 | d33 = 85.6 | k33 = 0.56 | |||
Zgonik et al. 1994[12] | BaTiO3 single crystals | [001] (single domain) | d33 = 90 | |||
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] (single domain) | d33 = 224 | |||
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral (domain size of 100 ľm) | d33 = 235 | ε33 = 1984 | k33 = 54.4 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral (domain size of 60 ľm) | d33 = 241 | ε33 = 1959 | k33 = 55.9 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] (domain size of 22 ľm) | d33 = 256 | ε33 = 2008 | k33 = 64.7 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral (domain size of 15 ľm) | d33 = 274 | ε33 = 2853 | k33 = 66.1 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral (domain size of 14 ľm) | d33 = 289 | ε33 = 1962 | k33 = 66.7 | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [111] neutral | d33 = 331 | ε33 = 2679 | k33 = 65.2 | |
Wang et al. 2007[28] | Bi2O3 doped KNN | d33 = 127 | ε33 = 1309 | kp = 28.3 | ||
Zhang et al. 2003[22] | BSPT57 | d33 = 1200 | ε33 = 3000 | k31 = 77 | ||
Zhang et al. 2003[22] | BSPT57 | d31 = -560 | ||||
Ye et al. 2008[24] | BSPT57 | d33 = 1150d31 = -520 | ε33 = 3000 | k31 = 0.52k33 = 0.91 | ||
Zhang et al. 2003[23] | BSPT58 | d33 = 1400 | ε33 = 3200 | k31 = 80 | ||
Zhang et al. 2003[23] | BSPT58 | d31 = -670 | ||||
Zhang et al. 2004[16] | BSPT66 | d33 = 440 | ε33 = 820 | k31 = 52 | ||
Zhang et al. 2004[16] | BSPT66 | d31 = -162 | ||||
Ye et al. 2008[24] | BSPT66 | d33 = 440 | ε33 = 820 | k31 = 0.52k33 = 0.88 | ||
Ye et al. 2008[24] | BSPT66 | d31 = -162 | ||||
Jiang anf al. 2009[29] | doped KNN-0.005BF | d33 = 257 | ε33 = 361 | kp= 52 | 45 | |
Matsubara et al. 2004[25] | KCN-modified KNN | d33 = 100d31 = -180 | ε33 = 220-330 | kp = 33-39 | 1200 | |
Matsubara et al. 2005[27] | KCT modified KNN | d33 = 190 | ε33 = | kp = 42 | 1300 | |
Ryu Et. al 2007[26] | KZT modifiedKNN | d33 = 126 | ε33 = 590 | kp = 42 | 58 | |
Smith et al. 1971[5] | LiNbO3 | <001> | d15 = 69.2 | ε11 = 85.2 | ||
Smith et al. 1971[5] | LiNbO3 | <001> | d22 = 20.8 | ε33 = 28.2 | ||
Smith et al. 1971[5] | LiNbO3 | <001> | d31 = -0.85 | |||
Smith et al. 1971[5] | LiNbO3 | <001> | d33 = 6 | |||
Warner et al. 1967[4] | LiNbO3 (Au-Au) | <001> | d15 = 68 | ε11 = 84 | ||
Warner et al. 1967[4] | LiNbO3 (Au-Au) | <001> | d22 = 21 | ε33 = 30 | ||
Warner et al. 1967[4] | LiNbO3 (Au-Au) | <001> | d31 = -1 | k31 = 0.02 | ||
Warner et al. 1967[4] | LiNbO3 (Au-Au) | <001> | d33 = 6 | kt = 0.17 | ||
Yamada et al. 1967[6] | LiNbO3 (Au-Au) | <001> | d15 = 74 | ε11 = 84.6 | ||
Yamada et al. 1967[6] | LiNbO3 (Au-Au) | <001> | d22 = 21 | ε33 = 28.6 | k22 = 0.32 | |
Yamada et al. 1967[6] | LiNbO3 (Au-Au) | <001> | d31 = -0.87 | k31 = 0.023 | ||
Yamada et al. 1967[6] | LiNbO3 (Au-Au) | <001> | d33 = 16 | k33 = 0.47 | ||
Yamada et al. 1969[7] | LiTaO3 | d15 = 26 | ε11 = 53 | |||
Yamada et al. 1969[7] | LiTaO3 | d22 = 8.5 | ε33 = 44 | |||
Yamada et al. 1969[7] | LiTaO3 | d31 = -3 | ||||
Yamada et al. 1969[7] | LiTaO3 | d33 = 9.2 | ||||
[13] | LN crystal | d31 = -4.5d33 = -0.27 | ||||
Hosono et al. 2003[20] | PIMNT | 1950 | ε33 = 3630 | / | ||
Yasuda Et. al 2001[18] | PINT28 | 700 | ε33 = 1500 | / | ||
Guo et al. 2003[19] | PINT34 | 2000 | ε33 = 5000 | / | ||
Badel et al. 2006[9] | PMN-25PT | <110> | d31 = -643 | ε33 = 2560 | k31 = -0.73 | 362 |
Cao Et. al 2002[8] | PMN-PT (33%) | d15 = 146 | ε11 = 1660 | k15 = 0.32 | ||
Cao Et. al 2002[8] | PMN-PT (33%) | d31 = -1330 | ε33 = 8200 | k31 = 0.59 | ||
Cao Et. al 2002[8] | PMN-PT (33%) | d33 = 2820 | k33 = 0.94 | |||
Cao Et. al 2002[8] | PMN-PT (33%) | kt = 0.64 | ||||
Li et al. 2010[14] | PMNT31 | d33 = 2000 | ε33 = 5100 | k31 = 80 | ||
Li et al. 2010[14] | PMNT31 | d31 = -750 | ||||
Zhang et al. 2002[15] | PMNT31-A | 1400 | ε33 = 3600 | |||
Zhang et al. 2002[15] | PMNT31-B | 1500 | ε33 = 4800 | |||
Ye et al. 2008[24] | PMNT33 | d33 = 2820d31 = -1330 | ε33 = 8200 | k31 = 0.59k33 = 0.94 | ||
Yamashita et al. 1997[17] | PSNT33 | ε33 = 960 | / | |||
Zhang et al. 2002[15] | PYNT40 | d33 = 1200 | ε33 = 2700 | k31 = 76 | ||
Zhang et al. 2002[15] | PYNT40 | d31 = -500 | ||||
Zhang et al. 2012[21] | PYNT45 | d33 = 2000 | ε33 = 2000 | k31 = 78 | ||
Zhang et al. 2002[15] | PZNT4.5 | d33 = 2100 | ε33 = 4400 | k31 = 83 | ||
Zhang et al. 2002[15] | PZNT4.5 | d31 = -900 | ||||
Ye et al. 2008[24] | PZNT4.5 | d33 = 2000d31 = -970 | ε33 = 5200 | k31 = 0.50k33 = 0.91 | ||
Zhang et al. 2004[16] | PZNT8 | d33 = 2500 | ε33 = 6000 | k31 = 89 | ||
Zhang et al. 2004[16] | PZNT8 | d31 = -1300 | ||||
Ye et al. 2008[24] | PZNT8 | d31 = -1455 | ε33 = 7700 | k31 = 0.60k33 = 0.94 | ||
Zhang et al. 2004[16] | PZNT12 | d33 = 576 | ε33 = 870 | k31 = 52 | ||
Zhang et al. 2004[16] | PZNT12 | d31 = -217 | ||||
Ye et al. 2008[24] | PZNT12 | d33 = 576d31 = -217 | ε33 = 870 | k31 = 0.52k33 = 0.86 | ||
Kobiakov 1980[10] | ZnO | d15 = -8.3 | ε11 = 8.67 | k15 = 0.199 | ||
Kobiakov 1980[10] | ZnO | d31 = -5.12 | ε33 = 11.26 | k31 = 0.181 | ||
Kobiakov 1980[10] | ZnO | d33 = 12.3 | k33 = 0.466 | |||
Zgonik et al. 1994[11] | ZnO (pure with lithium dopant) | d15 = -13.3 | kr = 8.2 | |||
Zgonik et al. 1994[11] | ZnO (pure with lithium dopant) | d31 = -4.67 | ||||
Zgonik et al. 1994[11] | ZnO (pure with lithium dopant) | d33 = 12.0 |
Ceramics | ||||||
---|---|---|---|---|---|---|
Reference | Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) | Orientation | Piezoelectric coefficients, d (pC/N) | Relative permittiviy, εr | Electromechanical coupling factor, k | Quality factor |
[35] | PZT-5K | d33 = 870 | ε33 = 6200 | k33 = 0.75 | ||
[34] | PZT-5H | d15 = 741 | ε11 = 3130 | k15 = 0.68 | 65 | |
[34] | PZT-5H | d31 = -274 | ε33 = 3400 | k31 = 0.39 | ||
[34] | PZT-5H | d33 = 593 | k33 = 0.75 | |||
[33] | PZT-5A | d31 = -171 | ε33 = 1700 | k31 = 0.34 | ||
[33] | PZT-5A | d33 = 374 | k33 = 0.7 | |||
Tanaka et al. 2009[36] | PZN7%PT | d33 = 2400 | εr = 6500 | k33 = 0.94kt = 0.55 | ||
Chan et al. 2008[60] | Pz34 (doped PbTiO3) | d15 = 43.3 | ε33 = 237 | k31 = 4.6 | 700 | |
Chan et al. 2008[60] | Pz34 (doped PbTiO3) | d31 = -5.1 | ε33 = 208 | k33 = 39.6 | ||
Chan et al. 2008[60] | Pz34 (doped PbTiO3) | d33 = 46 | k15 = 22.8 | |||
Chan et al. 2008[60] | Pz34 (doped PbTiO3) | kp = 7.4 | ||||
Sessler 1981[81] | PVDF | d31 = 17.9 | k31 = 10.3 | |||
Sessler 1981[81] | PVDF | d32 = 0.9 | k33 = 12.6 | |||
Sessler 1981[81] | PVDF | d33 = -27.1 | ||||
Ren et al. 2017[82] | PVDF | d31 = 23 | εr = 106 | |||
Ren et al. 2017[82] | PVDF | d32 = 2 | ||||
Ren et al. 2017[82] | PVDF | d33 = -21 | ||||
Zhang et al. 1999[32] | PMN-PT | d31 = -74 | ε33 = 1170 | k31 = -0.312 | 283 | |
Berlincourt et al. 1960[76] | PbTiO3 (52%) PbZrO3 (48%) | d15 = 166 | k15 = 0.40 | 1170 | ||
Berlincourt et al. 1960[76] | PbTiO3 (52%) PbZrO3 (48%) | d31 = -43 | k31 = 0.17 | |||
Berlincourt et al. 1960[76] | PbTiO3 (52%) PbZrO3 (48%) | d33 = 110 | k33 = 0.43 | |||
Berlincourt et al. 1960[76] | PbTiO3 (52%) PbZrO3 (48%) | kr = 0.28 | ||||
Berlincourt et al. 1960[77] | PbTiO3 (50%) lead Zirconate (50%) | d15 = 166 | k15 = 0.504 | 950 | ||
Berlincourt et al. 1960[77] | PbTiO3 (50%) lead Zirconate (50%) | d31 = -43 | k31 = 0.23 | |||
Berlincourt et al. 1960[77] | PbTiO3 (50%) lead Zirconate (50%) | d33 = 110 | k33 = 0.546 | |||
Berlincourt et al. 1960[77] | PbTiO3 (50%) lead Zirconate (50%) | kr = 0.397 | ||||
Jaffe et al. 1955[74] | PbHfO3 (50%) PbTiO3 (50%) | d31 = -54 | kr = 0.38 | |||
Tanaka et al. 2009[36] | Oriented LF4 | d33 = 416 | 1.57 | 61.0 | ||
Hao et al. 2012[54] | NKLNT | (001) Textured samples | d33 = 310 | kp = 43 | ||
Zou et al. 2016[47] | NBT-KBT | (001) Textured samples | d33 = 134 | kp= 35 | ||
Saito et al. 2004[43] | NBT-KBT | (001) Textured samples | d33 = 217 | kp = 61 | ||
Gao et al. 2008[46] | NBT-BT-KBT | (001) Textured samples | d33 = 192 | |||
Maurya et al. 2013[45] | NBT-BT | (001) Textured samples | d33 = 322 | … | ||
Kell 1962[75] | Nb2O6Pb (80%) BaNb2O6 (20%) | d31 = 25 | kr = 0.20 | 15 | ||
Brown et al. 1962[70] | Nb2O6Pb (70%) BaNb2O6 (30%) | d31 = -40 | ε33 = 900 | k31 = 0.13 | 350 | |
Brown et al. 1962[70] | Nb2O6Pb (70%) BaNb2O6 (30%) | d33 = 100 | k33 = 0.3 | |||
Brown et al. 1962[70] | Nb2O6Pb (70%) BaNb2O6 (30%) | kr = 0.24 | ||||
Ikeda et al. 1961[68] | Nb2O6Pb | d31 = -11 | kr = 0.07 | 11 | ||
Ikeda et al. 1961[68] | Nb2O6Pb | d33 = 80 | k31 = 0.045 | |||
Ikeda et al. 1961[68] | Nb2O6Pb | k33 = 0.042 | ||||
Brown et al. 1962[70] | NaNbO3 (80%) Cd2Nb2O7 (20%) | d31 = -80 | ε33 = 2000 | k31 = 0.17 | ||
Brown et al. 1962[70] | NaNbO3 (80%) Cd2Nb2O7 (20%) | d33 = 200 | k33 = 0.42 | |||
Brown et al. 1962[70] | NaNbO3 (80%) Cd2Nb2O7 (20%) | kr = 0.30 | ||||
Zhang et al. 2006[42] | LNKN | d33 = 314 | ~700 | 41.2 | ||
Saito et al. 2004[43] | LF4 | d33 = 300 | 1.57 | |||
Takao et al. 2006[51] | KNNT | (001) Textured samples | d33 = 390 | kp = 54 | ||
Chang Et. al 2011[49] | KNNS | (001) Textured samples | d33 = 208 | kp = 63 | ||
Shibata et al. 2011[80] | KNN(Pt-Pt) | <001> | d31 = -96.3 | εr = 1100 | ||
Shibata et al. 2011[80] | KNN(Pt-Pt) | <001> | d33 = 138.2 | |||
Park et al. 2007[40] | KNN-ST | d33 = 220 | 1.45 | 40.0 | 70 | |
Park et al. 2007[40] | KNN-ST | d33 = 220 | 1.45 | 40.0 | 70 | |
Saito et al. 2004[43] | KNN-LS | d33 = 270 | 1.38 | 50.0 | ||
Cho et al. 2012[53] | KNN-CuO | (001) Textured samples | d33 = 133 | kp = 46 | ||
Zhao et al. 2007[41] | KNN-CT | d33 = 241 | 1.32 | 41.0 | ||
Maurya et al. 2013[45] | KNN-CT | d33 = 241 | 1.32 | 41.0 | ||
Park et al. 2006[38] | KNN-BZ | d33 = 400 | 2 | 57.4 | 48 | |
Park et al. 2006[38] | KNN-BZ | d33 = 400 | 2 | 57.4 | 48 | |
Cho et al. 2007[39] | KNN-BT | d33 = 225 | 1.06 | 36.0 | ||
Cho et al. 2007[44] | KNN-BT | d33 = 225 | 1.06 | 36.0 | ||
Li et al. 2012[52] | KNN 1 CuO | (001) Textured samples | d33 = 123 | kp = 54 | ||
Hao et al. 2012[54] | KNN | (001) Textured samples | d33 = 180 | kp = 44 | ||
Chang et al. 2009[48] | KNLNTS | (001) Textured samples | d33 = 416 | kp = 64 | ||
Sasaki et al. 1999[62] | KNLNTS | εr = 1156 | k31 = 0.26 | 80 | ||
Sasaki et al. 1999[62] | KNLNTS | ε33 = 746 | kt = 0.32 | |||
Sasaki et al. 1999[62] | KNLNTS | kp = 0.43 | ||||
Hussain et al. 2013[50] | KNLN | (001) Textured samples | d33 = 192 | kp = 60 | ||
Gupta et al. 2014[55] | KNLN | (001) Textured samples | d33 = 254 | |||
Egerton et al. 1959[67] | KNbO3 (50%) NaNbO3 (50%) | d31 = -32 | 140 | |||
Egerton et al. 1959[67] | KNbO3 (50%) NaNbO3 (50%) | d33 = 80 | k31 = 0.21 | |||
Egerton et al. 1959[67] | KNbO3 (50%) NaNbO3 (50%) | k33 = 0.51 | ||||
Tsubouchi et al. 1981[83] | Epi AlN/Al2O3 | <001> | d33 = 5.53 | ε33 = 9.5 | kt = 6.5 | 2490 |
Hutson 1960[65] | CdS | d15 = -14.35 | ||||
Hutson 1960[65] | CdS | d31 = -3.67 | ||||
Hutson 1960[65] | CdS | d33 = 10.65 | ||||
Schofield et al. 1957[66] | CdS | d31 = -1.53 | ||||
Schofield et al. 1957[66] | CdS | d33 = 2.56 | ||||
Ikeda et al. 1962[69] | C6H17N3O10S | d23 = 84 | k21 = 0.18 | |||
Ikeda et al. 1962[69] | C6H17N3O10S | d21 = 22.7 | k22 = 0.18 | |||
Ikeda et al. 1962[69] | C6H17N3O10S | d25 = 22 | k23 = 0.44 | |||
Lee et al. 2009[61] | BNKLBT | d33 = 163 | εr = 766 | k31 = 0.188 | 142 | |
Lee et al. 2009[61] | BNKLBT | ε33 = 444.3 | kt = 0.524 | |||
Lee et al. 2009[61] | BNKLBT | kp = 0.328 | ||||
Tang et al. 2011[31] | BFO | d33 = 37 | kt = 0.6 | |||
Schultheiß et al. 2017 [58] | BCZT-T-H | (001) Textured samples | d33 = 580 | |||
Bai et al. 2016[56] | BCZT | (001) Textured samples | d33 = 470 | kp = 47 | ||
Ye et al. 2013[57] | BCZT | (001) Textured samples | d33 = 462 | kp = 49 | ||
OMORI et al. 1990[59] | BCT | (001) Textured samples | d33 = 170 | |||
Pullin 1962[72] | BaTiO3 (97%) CaTiO3 (3%) | d31 = -53 | ε33 = 1390 | k15 = 0.39 | ||
Pullin 1962[72] | BaTiO3 (97%) CaTiO3 (3%) | d33 = 135 | k31 = 0.17 | |||
Pullin 1962[72] | BaTiO3 (97%) CaTiO3 (3%) | k33 = 0.43 | ||||
Berlincourt et al. 1960[73] | BaTiO3 (96%) PbTiO3 (4%) | d31 = -38 | ε33 = 990 | k15 = 0.34 | ||
Berlincourt et al. 1960[73] | BaTiO3 (96%) PbTiO3 (4%) | d33 = 105 | k31 = 0.14 | |||
Berlincourt et al. 1960[73] | BaTiO3 (96%) PbTiO3 (4%) | k33 = 0.39 | ||||
Schofield et al. 1957[66] | BaTiO3 (95%) CaTiO3 (5%) CoCO3 (0.25%) | d31 = -60 | ε33 = 1605 | kr = 0.33 | ||
Berlincourt et al. 1960[73] | BaTiO3 (95%) CaTiO3 (5%) | d15 = -257 | ε33 = 1355 | k15 = 0.495 | 500 | |
Berlincourt et al. 1960[73] | BaTiO3 (95%) CaTiO3 (5%) | d31 = -58 | k31 = 0.19 | |||
Berlincourt et al. 1960[73] | BaTiO3 (95%) CaTiO3 (5%) | d33 = 150 | k33 = 0.49 | |||
Berlincourt et al. 1960[73] | BaTiO3 (95%) CaTiO3 (5%) | kr = 0.3 | ||||
Pullin 1962[78] | BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) | d31 = -31 | k31 = 0.15 | 1200 | ||
Pullin 1962[78] | BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) | d33 = 79 | k33 = 0.41 | |||
Pullin 1962[78] | BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) | kr = 0.24 | ||||
Brown et al. 1962[70] | BaTiO3 (95%) BaZrO3 (5%) | k15 = 0.15 | 200 | |||
Brown et al. 1962[70] | BaTiO3 (95%) BaZrO3 (5%) | d31 = -60 | k31 = 0.40 | |||
Brown et al. 1962[70] | BaTiO3 (95%) BaZrO3 (5%) | d33 = 150 | k33 = 0.28 | |||
Berlincourt et al. 1958[30] | BaTiO3 | d15 = 270 | ε11 = 1440 | k15 = 0.57 | ||
Berlincourt et al. 1958[30] | BaTiO3 | d31 = -79 | ε33 = 1680 | k31 = 0.49 | ||
Berlincourt et al. 1958[30] | BaTiO3 | d33 = 191 | k33 = 0.47 | |||
Huston 1960[65] | BaNb2O6 (60%) Nb2O6Pb (40%) | d31 = -25 | kr = 0.16 | |||
Baxter et al. 1960[71] | BaNb2O6 (50%) Nb2O6Pb (50%) | d31= -36 | kr = 0.16 | |||
Egerton et al. 1959[67] | BaCaOTi | d31 = -50 | k15 = 0.19 | 400 | ||
Egerton et al. 1959[67] | BaCaOTi | d33 = 150 | k31 = 0.49 | |||
Egerton et al. 1959[67] | BaCaOTi | k33 = 0.325 | ||||
Pang et al. 2010[37] | ANSZ | d33 = 295 | 1.61 | 45.5 | 84 | |
Pang et al. 2010[37] | ANSZ | d33 = 295 | 1.61 | 45.5 | 84 | |
Defaÿ 2011[79] | AlN (Pt-Mo) | d31 = -2.5 | ||||
Takenaka et al. 1991[63] | (Bi0.5Na0.5)TiO3 (BNT)-based BNKT | d31 = 46 | εr = 650 | kp = 0.27 | ||
Takenaka et al. 1991[63] | (Bi0.5Na0.5)TiO3 (BNT)-based BNKT | d33 = 150 | k31 = 0.165 | |||
Tanaka et al. 1960[64] | (Bi0.5Na0.5)TiO3 (BNT)-based BNBT | d31 = 40 | εr = 580 | k31 = 0.19 | ||
Tanaka et al. 1960[64] | (Bi0.5Na0.5)TiO3 (BNT)-based BNBT | d33 = 12.5 | k33 = 0.55 |
What we have for the piezo material?
We have more than hundreds of piezo materials for your reference. No matter what you need soft material or hard material. Both for PZT-4 series, and PZT-8 series, or PZT-5A, PZT-5H. we have all of them. Contact us, We will send you our piezo material specification.