Home » Application Market » Piezo material specification

Piezo material specification

Piezo material specification

Piezo specification from HE SHUAI

Last Updated on November 3, 2021 by You Ling

What’s Piezo material Specification?

Piezo materials (PMs) can be broadly classified as either crystalline, ceramic, or polymeric. The most commonly produced piezoelectric ceramics are lead zirconate titanate (PZT), barium titanate, and lead titanate. Gallium nitride and zinc oxide can also be regarded as ceramic due to their relatively wide band gaps. Semiconducting PMs offer features such as compatibility with integrated circuits and semiconductor devices. Inorganic ceramic PMs offer advantages over single crystals, including ease of fabrication into a variety of shapes and sizes not constrained crystallographic directions. Organic polymer PMs, such as PVDF, have low Young’s modulus compared to inorganic PMs. Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured into large areas, and cut into a variety of shapes. In addition, polymers also exhibit high strength, high impact resistance, low dielectric constant, low elastic stiffness, and low density, thereby a high voltage sensitivity which is a desirable characteristic along with low acoustic and mechanical impedance useful for medical and underwater applications.

Among PMs, PZT ceramics are popular as they have a high sensitivity, a high g33 value. They are however brittle. Furthermore, they show low Curie temperature, leading to constraints in terms of applications in harsh environmental conditions. However, promising is the integration of ceramic disks into industrial appliances molded from plastic. This resulted in the development of PZT-polymer composites, and the feasible integration of functional PM composites on large scale, by simple thermal welding or by conforming processes. Several approaches towards lead-free ceramic PM have been reported, such as piezoelectric single crystals (langasite), and ferroelectric ceramics with a perovskite structure and bismuth layer-structured ferroelectrics (BLSF), which have been extensively researched. Also, several ferroelectrics with perovskite-structure (BaTiO3 [BT], (Bi1/2Na1/2) TiO3 [BNT], (Bi1/2K1/2) TiO3 [BKT], KNbO3 [KN], (K, Na) NbO3 [KNN]) have been investigated for their piezoelectric properties.

Key piezoelectric properties

  • The piezoelectric coefficients (d33d31d15) measure the strain induced by an applied voltage (expressed as meters per volt). High dij coefficients indicate larger displacements which are needed for motoring transducer devices. The coefficient d33 measures deformation in the same direction (polarization axis) as the induced potential, whereas d31 describes the response when the force is applied perpendicular to the polarization axis. The d15 coefficient measures the response when the applied mechanical stress is due to shear deformation.
  • Relative permittivity(εr) is the ratio between the absolute permittivity of the piezoelectric material, ε, and the vacuum permittivity, ε0.
  • The electromechanical coupling factor is an indicator of the effectiveness with which a piezoelectric material converts electrical energy into mechanical energy, or converts mechanical energy into electrical energy. The first subscript to k denotes the direction along which the electrodes are applied; the second denotes the direction along which the mechanical energy is applied, or developed.
  • The mechanical quality factor Qm is an important high-power property of piezoelectric ceramics. It is the inverse of the mechanical loss tan ϕ.
Single crystals
Reference Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) Orientation Piezoelectric coefficients, d (pC/N) Relative permittiviy, εr Electromechanical coupling factor, k Quality factor
Hutson 1963[2] AlN d15 = -4.07 ε33 = 11.4
Hutson 1963[2] AlN d31 = -2
Hutson 1963[2] AlN d33 = 5
Cook et al. 1963[3] BaTiO3 d15 = 392 ε11 = 2920 k15 = 0.57
Cook et al. 1963[3] BaTiO3 d31 = -34.5 ε33 = 168 k31 = 0.315
Cook et al. 1963[3] BaTiO3 d33 = 85.6 k33 = 0.56
Zgonik et al. 1994[12] BaTiO3 single crystals [001] (single domain) d33 = 90
Zgonik et al. 1994[12] BaTiO3 single crystals [111] (single domain) d33 = 224
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral (domain size of 100 ľm) d33 = 235 ε33 = 1984 k33 = 54.4
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral (domain size of 60 ľm) d33 = 241 ε33 = 1959 k33 = 55.9
Zgonik et al. 1994[12] BaTiO3 single crystals [111] (domain size of 22 ľm) d33 = 256 ε33 = 2008 k33 = 64.7
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral (domain size of 15 ľm) d33 = 274 ε33 = 2853 k33 = 66.1
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral (domain size of 14 ľm) d33 = 289 ε33 = 1962 k33 = 66.7
Zgonik et al. 1994[12] BaTiO3 single crystals [111] neutral d33 = 331 ε33 = 2679 k33 = 65.2
Wang et al. 2007[28] Bi2O3 doped KNN d33 = 127 ε33 = 1309 kp = 28.3
Zhang et al. 2003[22] BSPT57 d33 = 1200 ε33 = 3000 k31 = 77
Zhang et al. 2003[22] BSPT57 d31 = -560
Ye et al. 2008[24] BSPT57 d33 = 1150d31 = -520 ε33 = 3000 k31 = 0.52k33 = 0.91
Zhang et al. 2003[23] BSPT58 d33 = 1400 ε33 = 3200 k31 = 80
Zhang et al. 2003[23] BSPT58 d31 = -670
Zhang et al. 2004[16] BSPT66 d33 = 440 ε33 = 820 k31 = 52
Zhang et al. 2004[16] BSPT66 d31 = -162
Ye et al. 2008[24] BSPT66 d33 = 440 ε33 = 820 k31 = 0.52k33 = 0.88
Ye et al. 2008[24] BSPT66 d31 = -162
Jiang anf al. 2009[29] doped KNN-0.005BF d33 = 257 ε33 = 361 kp= 52 45
Matsubara et al. 2004[25] KCN-modified KNN d33 = 100d31 = -180 ε33 = 220-330 kp = 33-39 1200
Matsubara et al. 2005[27] KCT modified KNN d33 = 190 ε33 = kp = 42 1300
Ryu Et. al 2007[26] KZT modifiedKNN d33 = 126 ε33 = 590 kp = 42 58
Smith et al. 1971[5] LiNbO3 <001> d15 = 69.2 ε11 = 85.2
Smith et al. 1971[5] LiNbO3 <001> d22 = 20.8 ε33 = 28.2
Smith et al. 1971[5] LiNbO3 <001> d31 = -0.85
Smith et al. 1971[5] LiNbO3 <001> d33 = 6
Warner et al. 1967[4] LiNbO3 (Au-Au) <001> d15 = 68 ε11 = 84
Warner et al. 1967[4] LiNbO3 (Au-Au) <001> d22 = 21 ε33 = 30
Warner et al. 1967[4] LiNbO3 (Au-Au) <001> d31 = -1 k31 = 0.02
Warner et al. 1967[4] LiNbO3 (Au-Au) <001> d33 = 6 kt = 0.17
Yamada et al. 1967[6] LiNbO3 (Au-Au) <001> d15 = 74 ε11 = 84.6
Yamada et al. 1967[6] LiNbO3 (Au-Au) <001> d22 = 21 ε33 = 28.6 k22 = 0.32
Yamada et al. 1967[6] LiNbO3 (Au-Au) <001> d31 = -0.87 k31 = 0.023
Yamada et al. 1967[6] LiNbO3 (Au-Au) <001> d33 = 16 k33 = 0.47
Yamada et al. 1969[7] LiTaO3 d15 = 26 ε11 = 53
Yamada et al. 1969[7] LiTaO3 d22 = 8.5 ε33 = 44
Yamada et al. 1969[7] LiTaO3 d31 = -3
Yamada et al. 1969[7] LiTaO3 d33 = 9.2
[13] LN crystal d31 = -4.5d33 = -0.27
Hosono et al. 2003[20] PIMNT 1950 ε33 = 3630 /
Yasuda Et. al 2001[18] PINT28 700 ε33 = 1500 /
Guo et al. 2003[19] PINT34 2000 ε33 = 5000 /
Badel et al. 2006[9] PMN-25PT <110> d31 = -643 ε33 = 2560 k31 = -0.73 362
Cao Et. al 2002[8] PMN-PT (33%) d15 = 146 ε11 = 1660 k15 = 0.32
Cao Et. al 2002[8] PMN-PT (33%) d31 = -1330 ε33 = 8200 k31 = 0.59
Cao Et. al 2002[8] PMN-PT (33%) d33 = 2820 k33 = 0.94
Cao Et. al 2002[8] PMN-PT (33%) kt = 0.64
Li et al. 2010[14] PMNT31 d33 = 2000 ε33 = 5100 k31 = 80
Li et al. 2010[14] PMNT31 d31 = -750
Zhang et al. 2002[15] PMNT31-A 1400 ε33 = 3600
Zhang et al. 2002[15] PMNT31-B 1500 ε33 = 4800
Ye et al. 2008[24] PMNT33 d33 = 2820d31 = -1330 ε33 = 8200 k31 = 0.59k33 = 0.94
Yamashita et al. 1997[17] PSNT33 ε33 = 960 /
Zhang et al. 2002[15] PYNT40 d33 = 1200 ε33 = 2700 k31 = 76
Zhang et al. 2002[15] PYNT40 d31 = -500
Zhang et al. 2012[21] PYNT45 d33 = 2000 ε33 = 2000 k31 = 78
Zhang et al. 2002[15] PZNT4.5 d33 = 2100 ε33 = 4400 k31 = 83
Zhang et al. 2002[15] PZNT4.5 d31 = -900
Ye et al. 2008[24] PZNT4.5 d33 = 2000d31 = -970 ε33 = 5200 k31 = 0.50k33 = 0.91
Zhang et al. 2004[16] PZNT8 d33 = 2500 ε33 = 6000 k31 = 89
Zhang et al. 2004[16] PZNT8 d31 = -1300
Ye et al. 2008[24] PZNT8 d31 = -1455 ε33 = 7700 k31 = 0.60k33 = 0.94
Zhang et al. 2004[16] PZNT12 d33 = 576 ε33 = 870 k31 = 52
Zhang et al. 2004[16] PZNT12 d31 = -217
Ye et al. 2008[24] PZNT12 d33 = 576d31 = -217 ε33 = 870 k31 = 0.52k33 = 0.86
Kobiakov 1980[10] ZnO d15 = -8.3 ε11 = 8.67 k15 = 0.199
Kobiakov 1980[10] ZnO d31 = -5.12 ε33 = 11.26 k31 = 0.181
Kobiakov 1980[10] ZnO d33 = 12.3 k33 = 0.466
Zgonik et al. 1994[11] ZnO (pure with lithium dopant) d15 = -13.3 kr = 8.2
Zgonik et al. 1994[11] ZnO (pure with lithium dopant) d31 = -4.67
Zgonik et al. 1994[11] ZnO (pure with lithium dopant) d33 = 12.0
                                                            Ceramics
Reference Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) Orientation Piezoelectric coefficients, d (pC/N) Relative permittiviy, εr Electromechanical coupling factor, k Quality factor
[35] PZT-5K d33 = 870 ε33 = 6200 k33 = 0.75
[34] PZT-5H d15 = 741 ε11 = 3130 k15 = 0.68 65
[34] PZT-5H d31 = -274 ε33 = 3400 k31 = 0.39
[34] PZT-5H d33 = 593 k33 = 0.75
[33] PZT-5A d31 = -171 ε33 = 1700 k31 = 0.34
[33] PZT-5A d33 = 374 k33 = 0.7
Tanaka et al. 2009[36] PZN7%PT d33 = 2400 εr = 6500 k33 = 0.94kt = 0.55
Chan et al. 2008[60] Pz34 (doped PbTiO3) d15 = 43.3 ε33 = 237 k31 = 4.6 700
Chan et al. 2008[60] Pz34 (doped PbTiO3) d31 = -5.1 ε33 = 208 k33 = 39.6
Chan et al. 2008[60] Pz34 (doped PbTiO3) d33 = 46 k15 = 22.8
Chan et al. 2008[60] Pz34 (doped PbTiO3) kp = 7.4
Sessler 1981[81] PVDF d31 = 17.9 k31 = 10.3
Sessler 1981[81] PVDF d32 = 0.9 k33 = 12.6
Sessler 1981[81] PVDF d33 = -27.1
Ren et al. 2017[82] PVDF d31 = 23 εr = 106
Ren et al. 2017[82] PVDF d32 = 2
Ren et al. 2017[82] PVDF d33 = -21
Zhang et al. 1999[32] PMN-PT d31 = -74 ε33 = 1170 k31 = -0.312 283
Berlincourt et al. 1960[76] PbTiO3 (52%) PbZrO3 (48%) d15 = 166 k15 = 0.40 1170
Berlincourt et al. 1960[76] PbTiO3 (52%) PbZrO3 (48%) d31 = -43 k31 = 0.17
Berlincourt et al. 1960[76] PbTiO3 (52%) PbZrO3 (48%) d33 = 110 k33 = 0.43
Berlincourt et al. 1960[76] PbTiO3 (52%) PbZrO3 (48%) kr = 0.28
Berlincourt et al. 1960[77] PbTiO3 (50%) lead Zirconate (50%) d15 = 166 k15 = 0.504 950
Berlincourt et al. 1960[77] PbTiO3 (50%) lead Zirconate (50%) d31 = -43 k31 = 0.23
Berlincourt et al. 1960[77] PbTiO3 (50%) lead Zirconate (50%) d33 = 110 k33 = 0.546
Berlincourt et al. 1960[77] PbTiO3 (50%) lead Zirconate (50%) kr = 0.397
Jaffe et al. 1955[74] PbHfO3 (50%) PbTiO3 (50%) d31 = -54 kr = 0.38
Tanaka et al. 2009[36] Oriented LF4 d33 = 416 1.57 61.0
Hao et al. 2012[54] NKLNT (001) Textured samples d33 = 310 kp = 43
Zou et al. 2016[47] NBT-KBT (001) Textured samples d33 = 134 kp= 35
Saito et al. 2004[43] NBT-KBT (001) Textured samples d33 = 217 kp = 61
Gao et al. 2008[46] NBT-BT-KBT (001) Textured samples d33 = 192
Maurya et al. 2013[45] NBT-BT (001) Textured samples d33 = 322
Kell 1962[75] Nb2O6Pb (80%) BaNb2O6 (20%) d31 = 25 kr = 0.20 15
Brown et al. 1962[70] Nb2O6Pb (70%) BaNb2O6 (30%) d31 = -40 ε33 = 900 k31 = 0.13 350
Brown et al. 1962[70] Nb2O6Pb (70%) BaNb2O6 (30%) d33 = 100 k33 = 0.3
Brown et al. 1962[70] Nb2O6Pb (70%) BaNb2O6 (30%) kr = 0.24
Ikeda et al. 1961[68] Nb2O6Pb d31 = -11 kr = 0.07 11
Ikeda et al. 1961[68] Nb2O6Pb d33 = 80 k31 = 0.045
Ikeda et al. 1961[68] Nb2O6Pb k33 = 0.042
Brown et al. 1962[70] NaNbO3 (80%) Cd2Nb2O7 (20%) d31 = -80 ε33 = 2000 k31 = 0.17
Brown et al. 1962[70] NaNbO3 (80%) Cd2Nb2O7 (20%) d33 = 200 k33 = 0.42
Brown et al. 1962[70] NaNbO3 (80%) Cd2Nb2O7 (20%) kr = 0.30
Zhang et al. 2006[42] LNKN d33 = 314 ~700 41.2
Saito et al. 2004[43] LF4 d33 = 300 1.57
Takao et al. 2006[51] KNNT (001) Textured samples d33 = 390 kp = 54
Chang Et. al 2011[49] KNNS (001) Textured samples d33 = 208 kp = 63
Shibata et al. 2011[80] KNN(Pt-Pt) <001> d31 = -96.3 εr = 1100
Shibata et al. 2011[80] KNN(Pt-Pt) <001> d33 = 138.2
Park et al. 2007[40] KNN-ST d33 = 220 1.45 40.0 70
Park et al. 2007[40] KNN-ST d33 = 220 1.45 40.0 70
Saito et al. 2004[43] KNN-LS d33 = 270 1.38 50.0
Cho et al. 2012[53] KNN-CuO (001) Textured samples d33 = 133 kp = 46
Zhao et al. 2007[41] KNN-CT d33 = 241 1.32 41.0
Maurya et al. 2013[45] KNN-CT d33 = 241 1.32 41.0
Park et al. 2006[38] KNN-BZ d33 = 400 2 57.4 48
Park et al. 2006[38] KNN-BZ d33 = 400 2 57.4 48
Cho et al. 2007[39] KNN-BT d33 = 225 1.06 36.0
Cho et al. 2007[44] KNN-BT d33 = 225 1.06 36.0
Li et al. 2012[52] KNN 1 CuO (001) Textured samples d33 = 123 kp = 54
Hao et al. 2012[54] KNN (001) Textured samples d33 = 180 kp = 44
Chang et al. 2009[48] KNLNTS (001) Textured samples d33 = 416 kp = 64
Sasaki et al. 1999[62] KNLNTS εr = 1156 k31 = 0.26 80
Sasaki et al. 1999[62] KNLNTS ε33 = 746 kt = 0.32
Sasaki et al. 1999[62] KNLNTS kp = 0.43
Hussain et al. 2013[50] KNLN (001) Textured samples d33 = 192 kp = 60
Gupta et al. 2014[55] KNLN (001) Textured samples d33 = 254
Egerton et al. 1959[67] KNbO3 (50%) NaNbO3 (50%) d31 = -32 140
Egerton et al. 1959[67] KNbO3 (50%) NaNbO3 (50%) d33 = 80 k31 = 0.21
Egerton et al. 1959[67] KNbO3 (50%) NaNbO3 (50%) k33 = 0.51
Tsubouchi et al. 1981[83] Epi AlN/Al2O3 <001> d33 = 5.53 ε33 = 9.5 kt = 6.5 2490
Hutson 1960[65] CdS d15 = -14.35
Hutson 1960[65] CdS d31 = -3.67
Hutson 1960[65] CdS d33 = 10.65
Schofield et al. 1957[66] CdS d31 = -1.53
Schofield et al. 1957[66] CdS d33 = 2.56
Ikeda et al. 1962[69] C6H17N3O10S d23 = 84 k21 = 0.18
Ikeda et al. 1962[69] C6H17N3O10S d21 = 22.7 k22 = 0.18
Ikeda et al. 1962[69] C6H17N3O10S d25 = 22 k23 = 0.44
Lee et al. 2009[61] BNKLBT d33 = 163 εr = 766 k31 = 0.188 142
Lee et al. 2009[61] BNKLBT ε33 = 444.3 kt = 0.524
Lee et al. 2009[61] BNKLBT kp = 0.328
Tang et al. 2011[31] BFO d33 = 37 kt = 0.6
Schultheiß et al. 2017 [58] BCZT-T-H (001) Textured samples d33 = 580
Bai et al. 2016[56] BCZT (001) Textured samples d33 = 470 kp = 47
Ye et al. 2013[57] BCZT (001) Textured samples d33 = 462 kp = 49
OMORI et al. 1990[59] BCT (001) Textured samples d33 = 170
Pullin 1962[72] BaTiO3 (97%) CaTiO3 (3%) d31 = -53 ε33 = 1390 k15 = 0.39
Pullin 1962[72] BaTiO3 (97%) CaTiO3 (3%) d33 = 135 k31 = 0.17
Pullin 1962[72] BaTiO3 (97%) CaTiO3 (3%) k33 = 0.43
Berlincourt et al. 1960[73] BaTiO3 (96%) PbTiO3 (4%) d31 = -38 ε33 = 990 k15 = 0.34
Berlincourt et al. 1960[73] BaTiO3 (96%) PbTiO3 (4%) d33 = 105 k31 = 0.14
Berlincourt et al. 1960[73] BaTiO3 (96%) PbTiO3 (4%) k33 = 0.39
Schofield et al. 1957[66] BaTiO3 (95%) CaTiO3 (5%) CoCO3 (0.25%) d31 = -60 ε33 = 1605 kr = 0.33
Berlincourt et al. 1960[73] BaTiO3 (95%) CaTiO3 (5%) d15 = -257 ε33 = 1355 k15 = 0.495 500
Berlincourt et al. 1960[73] BaTiO3 (95%) CaTiO3 (5%) d31 = -58 k31 = 0.19
Berlincourt et al. 1960[73] BaTiO3 (95%) CaTiO3 (5%) d33 = 150 k33 = 0.49
Berlincourt et al. 1960[73] BaTiO3 (95%) CaTiO3 (5%) kr = 0.3
Pullin 1962[78] BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) d31 = -31 k31 = 0.15 1200
Pullin 1962[78] BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) d33 = 79 k33 = 0.41
Pullin 1962[78] BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) kr = 0.24
Brown et al. 1962[70] BaTiO3 (95%) BaZrO3 (5%) k15 = 0.15 200
Brown et al. 1962[70] BaTiO3 (95%) BaZrO3 (5%) d31 = -60 k31 = 0.40
Brown et al. 1962[70] BaTiO3 (95%) BaZrO3 (5%) d33 = 150 k33 = 0.28
Berlincourt et al. 1958[30] BaTiO3 d15 = 270 ε11 = 1440 k15 = 0.57
Berlincourt et al. 1958[30] BaTiO3 d31 = -79 ε33 = 1680 k31 = 0.49
Berlincourt et al. 1958[30] BaTiO3 d33 = 191 k33 = 0.47
Huston 1960[65] BaNb2O6 (60%) Nb2O6Pb (40%) d31 = -25 kr = 0.16
Baxter et al. 1960[71] BaNb2O6 (50%) Nb2O6Pb (50%) d31= -36 kr = 0.16
Egerton et al. 1959[67] BaCaOTi d31 = -50 k15 = 0.19 400
Egerton et al. 1959[67] BaCaOTi d33 = 150 k31 = 0.49
Egerton et al. 1959[67] BaCaOTi k33 = 0.325
Pang et al. 2010[37] ANSZ d33 = 295 1.61 45.5 84
Pang et al. 2010[37] ANSZ d33 = 295 1.61 45.5 84
Defaÿ 2011[79] AlN (Pt-Mo) d31 = -2.5
Takenaka et al. 1991[63] (Bi0.5Na0.5)TiO3 (BNT)-based BNKT d31 = 46 εr = 650 kp = 0.27
Takenaka et al. 1991[63] (Bi0.5Na0.5)TiO3 (BNT)-based BNKT d33 = 150 k31 = 0.165
Tanaka et al. 1960[64] (Bi0.5Na0.5)TiO3 (BNT)-based BNBT d31 = 40 εr = 580 k31 = 0.19
Tanaka et al. 1960[64] (Bi0.5Na0.5)TiO3 (BNT)-based BNBT d33 = 12.5 k33 = 0.55

What we have for the piezo material?

We have more than hundreds of piezo materials for your reference. No matter what you need soft material or hard material. Both for PZT-4 series, and PZT-8 series, or PZT-5A, PZT-5H. we have all of them.  Contact us, We will send you our piezo material specification.